O Algoritmo Genético Coevolucionário para Redução de Subconjuntos de Casos de Teste da Análise de Mutantes
Resumo
O Algoritmo Genético Coevolucionário (AGC), utilizado na Análise de Mutantes, é responsável por selecionar, concomitantemente, subconjuntos de programas mutantes e casos de teste com alto escore de mutação e baixo custo. Todavia, tal algoritmo não foi avaliado sob a perspectiva de minimização dos subconjuntos selecionados, fator que pode reduzir ainda mais o custo da Análise de Mutantes. Tendo isso em vista, o presente trabalho objetiva avaliar o AGC aplicando-se a minimização de subconjuntos de casos de teste. O AGC foi comparado com outra técnica de minimização da literatura sobre quatro benchmarks. Os resultados revelam que o AGC seleciona subconjuntos de casos de teste mínimos, ou bem próximos, nos cenários analisados.